Automated computer quantification of breast cancer in small-animal models using PET-guided MR image co-segmentation

نویسندگان

  • Ulas Bagci
  • Gabriela Kramer-Marek
  • Daniel J Mollura
چکیده

BACKGROUND Care providers use complementary information from multiple imaging modalities to identify and characterize metastatic tumors in early stages and perform surveillance for cancer recurrence. These tasks require volume quantification of tumor measurements using computed tomography (CT) or magnetic resonance imaging (MRI) and functional characterization through positron emission tomography (PET) imaging. In vivo volume quantification is conducted through image segmentation, which may require both anatomical and functional images available for precise tumor boundary delineation. Although integrating multiple image modalities into the segmentation process may improve the delineation accuracy and efficiency, due to variable visibility on image modalities, complex shape of metastatic lesions, and diverse visual features in functional and anatomical images, a precise and efficient segmentation of metastatic breast cancer remains a challenging goal even for advanced image segmentation methods. In response to these challenges, we present here a computer-assisted volume quantification method for PET/MRI dual modality images using PET-guided MRI co-segmentation. Our aims in this study were (1) to determine anatomical tumor volumes automatically from MRI accurately and efficiently, (2) to evaluate and compare the accuracy of the proposed method with different radiotracers (18F-Z HER2-Affibody and 18F-flourodeoxyglucose (18F-FDG)), and (3) to confirm the proposed method's determinations from PET/MRI scans in comparison with PET/CT scans. METHODS After the Institutional Administrative Panel on Laboratory Animal Care approval was obtained, 30 female nude mice were used to construct a small-animal breast cancer model. All mice were injected with human breast cancer cells and HER2-overexpressing MDA-MB-231HER2-Luc cells intravenously. Eight of them were selected for imaging studies, and selected mice were imaged with MRI, CT, and 18F-FDG-PET at weeks 9 and 10 and then imaged with 18F-Z HER2-Affibody-PET 2 days after the scheduled structural imaging (MRI and CT). After CT and MR images were co-registered with corresponding PET images, all images were quantitatively analyzed by the proposed segmentation technique.Automatically determined anatomical tumor volumes were compared to radiologist-derived reference truths. Observer agreements were presented through Bland-Altman and linear regression analyses. Segmentation evaluations were conducted using true-positive (TP) and false-positive (FP) volume fractions of delineated tissue samples, as complied with the state-of-the-art evaluation techniques for image segmentation. Moreover, the PET images, obtained using different radiotracers, were examined and compared using the complex wavelet-based structural similarity index (CWSSI). (continued on the next page) (continued from the previous page) RESULTS PET/MR dual modality imaging using the 18F-Z HER2-Affibody imaging agent provided diagnostic image quality in all mice with excellent tumor delineations by the proposed method. The 18F-FDG radiotracer did not show accurate identification of the tumor regions. Structural similarity index (CWSSI) between PET images using 18F-FDG and 18F-Z HER2-Affibody agents was found to be 0.7838. MR showed higher diagnostic image quality when compared to CT because of its better soft tissue contrast. Significant correlations regarding the anatomical tumor volumes were obtained between both PET-guided MRI co-segmentation and reference truth (R2=0.92, p<0.001 for PET/MR, and R2=0.84, p<0.001, for PET/CT). TP and FP volume fractions using the automated co-segmentation method in PET/MR and PET/CT were found to be (TP 97.3%, FP 9.8%) and (TP 92.3%, FP 17.2%), respectively. CONCLUSIONS The proposed PET-guided MR image co-segmentation algorithm provided an automated and efficient way of assessing anatomical tumor volumes and their spatial extent. We showed that although the 18F-Z HER2-Affibody radiotracer in PET imaging is often used for characterization of tumors rather than detection, sensitivity and specificity of the localized radiotracer in the tumor region were informative enough; therefore, roughly determined tumor regions from PET images guided the delineation process well in the anatomical image domain for extracting accurate tumor volume information. Furthermore, the use of 18F-FDG radiotracer was not as successful as the 18F-Z HER2-Affibody in guiding the delineation process due to false-positive uptake regions in the neighborhood of tumor regions; hence, the accuracy of the fully automated segmentation method changed dramatically. Last, we qualitatively showed that MRI yields superior identification of tumor boundaries when compared to conventional CT imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

A Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures

Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...

متن کامل

Evaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study

Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013